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The flows induced by acoustic streaming in a three-dimensional side-heated parallelepiped cavity of length
A, representative of crystal growth configurations are numerically studied. Both the structure of the flows and
their stability properties are determined. The flows have different symmetries, belonging to the group D, for
pure streaming, Z, X Z, for pure buoyancy, and Z, for the mixed case, but these symmetries are generally
broken at the first bifurcation points. Bifurcation diagrams are obtained which show that the flows become
oscillatory periodic at a Hopf bifurcation, either directly on the primary steady solution branch, or on a
secondary branch which bifurcates from the primary branch at a steady bifurcation point. The critical Grashof
numbers for these bifurcation points are calculated as a function of the cavity length A,, the Prandtl number Pr
and the acoustic streaming parameter A. The thresholds are generally found to increase when the acoustic
streaming contribution is enhanced, which indicates a stabilizing effect induced by acoustic streaming and may
explain the observed improvement of the crystal quality when ultrasound waves are applied during the growth
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process. Destabilization effects are, however, found in some parameter range.
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I. INTRODUCTION

Acoustic streaming [1] describes a steady flow generated
by a sound wave propagating in a fluid. It is a nonlinear
effect which owes its origin to the action of Reynolds
stresses and the dissipation of acoustic energy flux. There are
two main types of acoustic streaming: Eckart streaming [2]
(or quartz wind) in which the dissipation takes place in the
main body of the fluid, and Rayleigh streaming [3] in which
the dissipation is associated with boundary layers at solid
surfaces. These streaming motions have been used to move
fluids in microfluidic devices [4], enhance rate-limited pro-
cesses such as diffusion [5] and heat transfer [6], induce
chaotic mixing [7], and even improve solidification pro-
cesses [8]. In this paper we consider Eckart streaming in
which the flow, generated inside the ultrasound beam, moves
away from the source within the body of fluid. As indicated
by many authors [1,2,9,10], Eckart streaming can be mod-
eled in the Navier-Stokes equations through a body force
acting within the ultrasound beam. With this modeling, the
acoustic streaming velocities have been determined analyti-
cally for a few simple systems [2,10,11]. In our case, we will
consider a three-dimensional parallelepiped cavity and the
problem will be solved by numerical simulation.

The present work is connected to the technologies of ma-
terials processing (semiconductors and metallic compounds
such as InP, GaAs, In-Sb, Bi-Sb, In-Cd,...) by directional
solidification from their melt. The motions inside the melt
are generally complex and time dependent and they influence
the quality of the obtained materials. The control of these
motions has then become an important research objective for
the last decade. In addition to microgravity and magnetic
fields which are both costly and heavy technologies, the use
of ultrasound waves seems to be promising. As already men-
tioned, such acoustic waves have been shown through ex-
perimental studies to be efficient in solidification situations
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[8], but the way they act through melt flow modifications is
not yet clear. The objective of this work is then to determine
the influence of acoustic streaming on these melt flows gen-
erated in differentially heated cavities, and more specifically
on the instabilities which spontaneously appear in such flows
[12]. The cavity considered in our numerical simulations is
typical of horizontal crystal growth configurations.

II. MATHEMATICAL MODEL
AND NUMERICAL TECHNIQUES

A. Mathematical model

The mathematical model consists of a rectangular paral-
lelepiped cavity filled with a low-Prandtl number fluid
(0.001 =Pr=0.04) (Fig. 1). The cavity has aspect ratios A,
=L/h (2=A,=5) and A,=I/h=1 (square cross section),
where L is the length of the cavity (along x), & is its height
(along z), and [ is its width (along y). This cavity is heated
from the side and submitted to an ultrasound beam.

The vertical end walls are isothermal and held at different

temperatures, 7), at the right hot end wall and 7, at the left
cold end wall, whereas the sidewalls are adiabatic. The fluid
is assumed to be Newtonian with constant physical proper-
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FIG. 1. Schematic diagram of the geometry.
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ties (kinematic viscosity v, thermal diffusivity «, density p),
except that, according to the Boussinesq approximation, the
fluid density is considered as temperature dependent in the
buoyancy term with a linear law p=p,[1-B8(T-T,,)], where
B is the thermal expansion coefficient, T,, is the mean tem-
perature, T,,=(T),+7T.)/2, and p,, is the value of the density
at Tm.

The ultrasound beam is generated by an ultrasound source
which is supposed to be square (of dimensionless size H,
=h;,/h=0.62) and located in the center of the left end wall.
The divergence of the beam is assumed to be small, so that
the beam can be considered to have a constant square cross
section equal to that of the source. The ultrasound field is
assumed to be a plane wave traveling in the positive x direc-
tion, with no reflection of the beam at the right end wall. This
can be obtained by favoring a good transmission of the beam
outside the cavity or by using an absorbing material. The
attenuation of the acoustic wave in the viscous fluid, due to
the dissipation of acoustic energy flux, generates a body
force F' acting within the ultrasound beam and equal to the
spatial variation of the Reynolds stress [1,9]. The compo-
nents of F are given by Lighthill [1] as F;=~d(pu;u;)/dx;,
where i and j denote the three directions of space, x; is the
spatial coordinate in the i direction, the u; are the fluctuating
velocities in the sound wave and the bar signifies a mean
value in time. The equivalent vector expression of F, which
can be found, for example, in Nyborg [9] and Frampton er al.
[4], is F=—p[(u'-V)u'+u’(V-u')]. For a plane wave trav-
eling in the positive x direction, the particle fluctuating ve-
locity in the ultrasound beam can be written as u
=V, e * sin(wt—kx), where w, k, V,, and « are the angular
frequency, the wave number, the particle velocity amplitude,
and the spatial attenuation factor of the sound wave, respec-
tively. The force F is therefore oriented along the x axis and
its intensity is given by F=paV%e~2* [9]. Now, provided the
beam is only slightly divergent and the attenuation of the
wave sufficiently weak, a body force which is constant (F
= paVi) inside the constant square cross-section beam and
zero everywhere else in the cavity, can be defined [2,10,11].
Following Lighthill [1], this body force is introduced in the
Navier-Stokes equations which, in our case, are coupled with
an energy equation through the buoyancy term. Using A,
W2/ v, v/h, pv*/h%, and y=(T,-T,)/A, as scales for length,
time, velocity, pressure, and temperature, respectively, these
equations take the following form:

V.-u=0, (1)

Jdu

ot (u-V)u=-Vp+Vu+GrTe.+Ade,, (2)

aT 1
— -V)T=—V?T, 3
ot + (V) Pr 3)

with boundary conditions given by d7/dz=0 on z==*1/2
and dT/dy=0 on y==*A/2, T=-A,/2 on x=-A,/2 and T
=A,/2 on x=A,/2, and u=0 on all boundaries. The dimen-
sionless variables are the velocity vector u=(u,v,w), the
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pressure p and the temperature T=(T—-T,,)/ 7y, and e and e,
are the unit vectors in the vertical and longitudinal direc-
tions, respectively. The nondimensional parameters are the
Grashof number Gr=pgyh’/1?, the Prandtl number Pr
=v/k and the acoustic streaming parameter A=C¥V5h3/1/2
which is the dimensionless expression of the acoustic force
F. 8, is a function of the space coordinates and its value is 1
inside the ultrasound beam and 0 outside.

B. Numerical techniques

The governing equations of the model are solved in the
three-dimensional domain using a spectral element method
[13]. The time discretization is carried out using a semi-
implicit splitting scheme where the nonlinear terms are first
integrated explicitly, the pressure is then solved through a
pressure equation enforcing the incompressibility constraint,
and the linear terms are finally integrated implicitly. This
time integration scheme is used for transient computations
with a third-order accurate formulation. However, our main
interest is in steady state solving and calculation of bifurca-
tion points which are both done by Newton methods as de-
scribed in Henry and Ben Hadid [14]. The main idea is to
solve the linear systems appearing at each Newton step by an
iterative solver, and to compute right-hand sides and matrix-
vector products corresponding to these linear systems by per-
forming adapted first order time steps of the basic or linear-
ized problem. The Jacobian matrix is thus never constructed
or stored. The generalized minimal residual (GMRES) algo-
rithm is used as the iterative solver. Finally, in order to ini-
tiate the calculation of bifurcation points, we have to calcu-
late leading eigenvalues—those with largest real part and
thus responsible for initiating instability—and their corre-
sponding eigenvectors. This is done through Arnoldi’s
method (ARPACK library) by time stepping the linearized
equations, as described by Mamun and Tuckerman [15].

III. RESULTS
A. Symmetries of the flows

In the Boussinesq approximation, the steady convective
flows obtained at moderate Gr (below the first transitions)
and without acoustic field in such a parallelepiped cavity
correspond to a simple unicellular circulation, where the flow
is up the hot wall, across the top, down the cold wall and
returning along the bottom [Fig. 2(a)]. These flows present
different symmetries [12]: a reflection symmetry S; with re-
spect to the longitudinal vertical V, plane (left-right symme-
try) and a m-rotational symmetry S, about the transverse y
axis. The combination of these two symmetries gives a sym-
metry S, with respect to the center point of the cavity (S,
=S5,-S,). The symmetry group generated by these symmetries
is the group Z, X Z,=D,.

When the ultrasound wave is applied, but without heating,
the flow generated by acoustic streaming is in the positive x
direction in the center of the cavity and returns along the
lateral walls [Fig. 2(b)]. In this case, due to the square cross
sections of the cavity and of the ultrasound beam, the sym-
metry group is the dihedral group D,, which corresponds to
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FIG. 2. Structure of the flows obtained with pure buoyancy [(a) Gr=40000, A=0], with pure acoustic streaming [(b) Gr=0, A=40000],
then with combined buoyancy and acoustic streaming [(c) Gr=40000, A=40000] for A,=4, A,=1, H,=0.62, and Pr=0.01. Contours of the
longitudinal velocity field in the middle planes of the cavity (from top to bottom, V,, H;, and V, planes), and then velocity vectors in the V;

plane.

reflection symmetries with respect to the V; plane and to the
longitudinal horizontal H; plane, but also with respect to the
longitudinal planes along the two diagonals of the square
cross section. Finally, when the ultrasound wave is applied
on the heated cavity, the flow is more complex, with only a
reflection symmetry with respect to the V, plane (symmetry
group Z,) [Fig. 2(c)], and its structure depends on the relative
values of Gr (quantifying the buoyancy effect) and A (quan-
tifying the acoustic streaming).

B. Bifurcation diagrams

We then study the first bifurcations which affect these
flows. For that, we follow the primary flow solution branch
by the continuation method and occasionally compute some
of the leading eigenvalues by Arnoldi’s method in order to
locate changes of stability. If a steady bifurcation is located,
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the corresponding unstable eigenvector and the associated
steady state solution are used to build a predictor for a solu-
tion along the emerging branch; the continuation method is
then used to follow the new branch.

Figure 3 shows the bifurcation diagrams obtained for a
cavity of aspect ratio A,=4 for both A=0 and A=40000. (In
this section, the Prandtl number is Pr=0.01.) The figure dis-
plays the evolution with Gr of the longitudinal velocity u at
a given point in the cavity. For A=0 [pure buoyancy driven
flow, Fig. 3(a)], the primary branch (with S; and S, symme-
tries) loses stability to steady perturbations breaking both S,
and S, symmetries at Gr,=61530 (supercritical pitchfork bi-
furcation point S;), producing a secondary branch of steady
solutions with only the S, symmetry. This secondary branch
then becomes unstable at a Hopf bifurcation point O, at
Gr,=92696. The Hopf bifurcation occurs without breaking
of symmetry, so that beyond this point, a periodic oscillatory
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FIG. 3. Bifurcation diagrams for a laterally heated cavity (A,=4, A,=1, Pr=0.01): (a) without acoustic streaming, A=0; (b) with acoustic
streaming, A=40000 (H,=0.62). S; indicates a pitchfork bifurcation on the primary branch and O, a Hopf bifurcation on the bifurcated
secondary branch. Insets are contours of the longitudinal velocity field in the H, plane.
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FIG. 4. Steady thresholds (S;) on the primary branch of solu-
tions and oscillatory thresholds (O,) on the secondary branch for
A,=4 (see Fig. 3), and oscillatory thresholds (O;) on the primary
branch for A,=2.8 as a function of the acoustic parameter A
(Ay=1, H,=0.62, Pr=0.01).

flow keeping the symmetry with respect to the center of the
cavity can be observed. For A=40000 [combined buoyancy
and acoustic streaming driven flow, Fig. 3(b)], the primary
branch (with only the S; symmetry) also loses stability with
breaking of symmetry to a secondary branch of steady solu-
tions. The corresponding supercritical pitchfork bifurcation
occurs at Gr.=81540, a value larger than that obtained for
A=0 indicating a stabilizing effect due to the acoustic
streaming. This secondary branch of nonsymmetric states be-
comes then unstable at a Hopf bifurcation point at Gr,
=141119 (still later than for A=0), beyond which a periodic
oscillatory flow without symmetry can be observed.

Other calculations were done for a cavity of aspect ratio
A,=2.8. In this case, we find a direct transition from the
primary branch to periodic oscillatory flows at a Hopf bifur-
cation point with breaking of the left-right S; symmetry. For
A=0, this transition occurs at Gr.=79644 and the oscillatory
flow triggered keeps the S, symmetry, whereas, for A
=40000, the transition occurs at Gr,=91509 and beyond this
point an oscillatory flow without symmetry can be observed.
Note that, in this case too, the increase of A induces an
increase of the threshold value.

C. Stability diagrams

We now describe more precisely and more widely the
influence of acoustic streaming on the flow transitions. For
that we continuously vary some of the important parameters
of the problem (A, A,, and Pr) and numerically compute the
evolution of the different bifurcation points by continuation.

For the two previously considered aspect ratios (A,=4 and
A,=2.8) and for Pr=0.01, we first vary the acoustic stream-
ing parameter A. The results are displayed in Fig. 4 which
shows the stability diagram giving the critical Grashof num-
ber Gr, for the different transitions as a function of A. For
A,=4, in the studied domain of A, the critical values for both
S, and O, transitions increase monotonously and quite
strongly with A, the Hopf bifurcation evolving slightly more
quickly. This indicates a clear stabilization of the buoyant
flow by acoustic streaming in this case, which in particular
allows to delay the onset of oscillatory flows responsible of
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FIG. 5. Steady thresholds (S;) on the primary branch of solu-
tions, oscillatory thresholds (O,) on the secondary branch, and os-
cillatory thresholds (O,) on the primary branch as a function of the
aspect ratio A, for three values of the acoustic parameter, A=0
(thick lines), A=20000 (lines with circles), and A=40000 (lines
with bullets) (A,=1, H,=0.62, Pr=0.01).

damages in crystal growth. For A ,=2.8, however, the influ-
ence of acoustic streaming is more complex. The threshold
for the Hopf bifurcation O, first slightly decreases with the
increase of A until about A=17000, before a clear increase
for larger values of A.

To have a better understanding on how the effect of
acoustic streaming on the thresholds evolves with the aspect
ratio A,, we continuously vary the aspect ratio from about 2
to 5 and follow the important thresholds for three acoustic
streaming intensities corresponding to A=0, A=20000, and
A=40000. The results are shown in Fig. 5 through the plots
of Gr,. for the different thresholds as a function of A,. With-
out acoustic streaming (A=0, thick lines), the first bifurca-
tion (smaller threshold on the primary branch) is steady (S,
points) above A,=2.9 (2.9<A,=5) and oscillatory (O,
points) below this value (2=<A,<2.9). The influence of
acoustic streaming on the S, bifurcation points is stabilizing,
which confirms what was obtained for A,=4 (Fig. 4). This
influence is strong for 2.9 <A, <4, but it strongly decreases
when A, is further increased. In the range of A, where S| is
the first bifurcation, the oscillatory transition (O, points) on
the bifurcated secondary branch was also calculated. For this
oscillatory transition too, the influence of acoustic streaming
is stabilizing. It is the strongest for A, around 4 and de-
creases when A, goes to 5. Finally, in the range of A, values
where the first transition is oscillatory (2=A,<2.9), the in-
fluence of acoustic streaming on the thresholds (O, points) is
more complex. For A, around 2, the influence is destabilizing
in the whole range of A (0=A=40000), whereas for A,
around 2.5, the initial destabilization is followed by a stabi-
lizing effect. As A, goes to 2.9, this stabilizing effect in-
creases and the initial destabilization becomes weaker (see
what is obtained for A,=2.8 in Fig. 4).

We finally consider the influence of the Prandtl number,
and thus vary Pr from 0.001 to 0.04 for a fixed aspect ratio
A,=4. The critical Grashof numbers for the different transi-
tions are given as a function of Pr in Fig. 6. For the small
values of Pr until about Pr=0.02, the first instability is steady
(S, points) and the oscillatory transition (O, points) occurs
on the bifurcated secondary branch. The influence of acous-

046311-4



INFLUENCE OF ACOUSTIC STREAMING ON THE ...

160

140

2120

i s
O%ﬂg
,ﬂ’ e
;@ff i
80 Ry /-‘/ 74
L

P

______ S,

107 Gr

S

60

40
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
Pr

FIG. 6. Steady thresholds (S;) on the primary branch of solu-
tions, oscillatory thresholds (O,) on the secondary branch, and os-
cillatory thresholds (O,) on the primary branch as a function of the
Prandtl number Pr for three values of the acoustic parameter, A=0
(thick lines), A=20000 (lines with circles), and A=40000 (lines
with bullets) (A,=4, A,=1, H,=0.62).

tic streaming on the S; transitions is stabilizing below Pr
=0.015 but destabilizing for 0.015<Pr<<0.02, whereas for
the O, transitions, the influence, calculated only up to Pr
=0.012, is found to be stabilizing. For the values of the
Prandtl number above Pr=0.02, the dynamics of the flow
without acoustic streaming (A=0) is very complex due to the
presence of a saddle-node bifurcation point (denoted as S,
and given as a thick short-dashed curve in Fig. 6) which
appears before any other bifurcation when following the pri-
mary solution branch. A steady bifurcation with breaking of
the S, symmetry is detected farther on the primary branch
(which progresses in the direction of decreasing Gr beyond
the saddle-node point), indicating that the oscillatory transi-
tion might still be on a bifurcated secondary branch. The
exact calculation of such bifurcation diagram which includes
many subcritical branches is very difficult. It has been
thought to be beyond the scope of this study which focuses
on the acoustic streaming effect. Despite this lack of infor-
mation for A=0, calculations have, however, been done for
A=20000 and A=40000. We recall from Sec. III A that,
when acoustic streaming is applied, the symmetry of the
problem changes from Z, X Z, to Z,, with in particular the
disappearance of the S, symmetry. The steady bifurcation
(originally with breaking of the S, symmetry) then naturally
disappears. Moreover, for the high values of A considered,
we find that the saddle-node point too has disappeared. The
bifurcation diagram for both A=20000 and A=40000 is then
reduced to a simple direct transition from the primary branch
to oscillatory flows at a Hopf bifurcation point. The variation
with Pr of the critical Grashof number for this point O; is
shown in Fig. 6 for both values of A. From the two curves,
we see that, in this range of Pr (0.02<<Pr<<0.04), there is
still a stabilizing effect induced by acoustic streaming on the
oscillatory transition, this effect decreasing when Pr goes to
0.02.

IV. RELEVANCE FOR REALISTIC
EXPERIMENTAL SITUATIONS

In this section, we want to show the relevance of the
acoustic model assumptions and of the nondimensional pa-
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rameter values for realistic experimental situations. For the
sake of simplicity, we choose a cavity with an aspect ratio
A,=L/h=4 and an ultrasound source of dimensionless size
H,=h,/h=2/3. We will consider two situations: a first situ-
ation referred to as case (a) and corresponding to a cavity
with h=4.5 cm (which implies h,=3 cm and L=18 cm)
and to an ultrasound wave of frequency f=3 MHz, and a
second situation referred to as case (b) and corresponding to
h=1.5 cm (which implies h,=1 c¢cm and L=6 cm) and to
f=10 MHz.

A. Acoustic model assumptions

We first estimate the divergence of the acoustic beam. The
half angle 6 of a circular beam is defined by sin(6)
=1.22¢/(fh,), where c is the sound velocity. To evaluate 6,
we use the sound velocity of water ¢=1500 m/s, which is
close to that in liquid metals. In both cases (a) and (b), we
obtain small values of 6 corresponding to slopes tan(#) equal
to 2.05 and 2.31 %, respectively.

Concerning the spatial attenuation factor of the acoustic
beam ¢, it depends on the dynamic viscosity pu which is also
quite similar in water and in liquid metals. As we know that
a is proportional to f and that a characteristic value in water
is @=0.01 m™! for f=0.8 MHz, we can write that «
~0.01(f/0.8)?, with f expressed in MHz. For the two cases
previously considered, we get @=0.14 and 1 m~!, which
gives rather weak 2.5 and 6 % attenuations on the corre-
sponding lengths of the cavity.

B. Typical nondimensional parameter values

We want now to estimate the values of the nondimen-
sional parameters which can be obtained in a realistic experi-
ment and compare them with the characteristic values used
in our numerical simulations. We still consider the two cases
(a) and (b) and assume that the cavity is filled with gallium at
a mean temperature of 346 K. The properties of gallium
can be taken from the paper of Braunsfurth er al. [16].
At 346 K, we get p=6089 Kg/m?, B=13 107* K/,
w=1.75 107 Kg/ms, and »=2.87 1077 m?/s, for the den-
sity, the thermal expansion coefficient, the dynamic viscosity,
and the kinematic viscosity, respectively.

For an applied acoustic power P, we can define the acous-
tic intensity / =P/hi, the particle velocity amplitude V,, such

that Vi:Zh%i, and finally the acoustic streaming parameter

Azanl}V'—z. For the case (a), for P=0.5 W, we get A
=18900, and for the case (b), for P=0.25 W, we get A

=22400. Concerning the Grashof number Grzﬁgj—ih;z,

where AT is the applied temperature difference, AT=0.2 K
leads to Gr=70300 in case (a), whereas AT=5 K leads to
Gr=65100 in case (b).

From these examples, we see that the characteristic values
used in the simulations for A (from 0 to 40000) and for Gr
(from 60000 to 120000) can be reached in both situations for
realistic experimental parameters. The experimental values
of A and Gr can further be modulated by respectively adjust-
ing the values of the applied acoustic power P and the ap-
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plied temperature difference AT. We can, however, note that
the case (a) would need a better control of the temperature in
the cavity.

V. CONCLUSION

Our three-dimensional numerical simulations have shown
that by applying an ultrasonic field to a laterally heated cav-
ity, the flows generated by buoyancy are strongly changed
through acoustic streaming effects and their stability proper-
ties are also deeply affected. The flows have different sym-
metry properties depending on whether buoyancy is consid-
ered alone or coupled to acoustic streaming. The bifurcation
diagrams we have obtained by increasing the Grashof num-
ber both with or without acoustic streaming and for different
cavity lengths and Prandtl numbers have shown that the tran-
sition to oscillatory flows is obtained either directly from the
primary solution branch, or from a steady secondary branch
which has previously bifurcated from the primary branch at a
steady bifurcation point. A more complex behavior induced
by a saddle-node bifurcation is also obtained in some param-
eter range for pure buoyancy, but acoustic streaming is found
to simplify the dynamics in these cases and a direct transition
to oscillations is finally obtained.
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A main potentiality of our numerical tool is to allow the
direct calculation of bifurcation points. We have then been
able to follow the different bifurcation points by continuation
over a large range of acoustic streaming parameters A, aspect
ratios A,, and Prandtl numbers Pr. The critical Grashof num-
bers for these bifurcation points are generally found to in-
crease when the acoustic streaming contribution is enhanced.
This effect is the strongest for aspect ratios ranging from
A,=3 to A,=4 and for Prandtl numbers either small (Pr
=0.01) or moderate (0.025=Pr=0.04), and it decreases for
larger aspect ratios. Such stabilizing effects induced by
acoustic streaming may explain the observed improvement
of the crystal quality when ultrasound waves are applied dur-
ing the growth process. Destabilization effects are however
found for small aspect ratios (A,=2.5) and for values of the
Prandtl number around Pr=0.02. This indicates that acoustic
streaming has to be used with caution and with care.
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